分布式建筑集群的能源运作优化-基于多目标的粒子群算法

发布时间:2015-11-19发布部门:管理学院

主题:   分布式建筑集群的能源运作优化-基于多目标的粒子群算法主讲人:   胡孟琪地点:   延安路校区旭日楼101室时间:   2015-11-23 13:30:00组织单位:   管理学院

主讲人简介:

胡孟琪博士,美国伊利诺伊大学芝加哥分校工业工程系助理教授。分别于2010年和2012年获美国亚利桑那州立大学工业工程专业的硕士、博士学位,2006年本科毕业于华中科技大学材料工程专业,2012-2015年8月任美国密西西比州立大学工业工程系助理教授。目前任职于伊利诺伊大学芝加哥分校工业工程系。主要研究方向包括复杂系统优化、分布式决策支持、Swarm群体智能算法;并应用于能源系统优化、制造系统及医疗健康领域。2015年美国AFOSR教职奖获得者,已经发表15篇高质量的期刊论文;并获得美国国家自然基金委NSF、DOD等机构资助的多个科研项目。

  

讲座介绍:

Title: An Augmented Multi-Objective Particle Swarm Optimizer for Distributed BuildingClusters Operation

The emerging technologies in smart building, smart grid,renewable energy, as well as distributed energy resources drive research movingfrom centralized operation decisions on a single building todecentralizeddecisions on temporally and spatially distributed buildingclusters which share energy resources locally and globally. Optimizing operating energysystems in the building clusters will result in cost effective buildings. Inthis research, we first develop a mixed integer non-linear multi-objectivedecision model based on a building clusters simulator with each building modeled byenergy consumption, storage and generation sub modules. Secondly, wepropose a bi-level distributed decision framework based on an augmented multi-objectiveparticle swarm optimization (AMOPSO) to study the tradeoff in energy usageamong the group of buildings. AMOPSO is augmented via the fusion of multiplesearch methods to enhance PSO’s search capability on a diverse set of searchspaces. Extensive experiments are conducted to compare the proposed AMOPSO withnine multi-objective PSO algorithms (MOPSOs) and multi-objective evolutionaryalgorithms (MOEAs).

 


视频:   摄影: 撰写:周莉莉  信息员:周莉莉  编辑:吴彦

相关阅读

本月热点排行