主讲人简介:
王健,福建师范大学数学与统计学院院长、教授、博士生导师,国家优秀青年基金获得者(2015)、日本学术振兴基金(2014)、德国洪堡基金获得者(2009)。 主要从事随机过程与随机分析方向的研究,特别是Lévy型过程的随机分析。
内容摘要:
We establish two-sided heat kernel estimates for full time and space of the Schr\odinger operator $-\frac{1}{2}\Delta+V$ on $\R^d$, where the potential $V(x)$ is locally bounded and behaves like $c|x|^{-\alpha}$ near infinity for some $\alpha\in (0,2)$ with $c> 0$, or for some $\alpha>0$ with large $c<0$. In particular, the potential $V$ is decaying near infinity but does not necessarily belong to the so-called Kato-class.
主持人:闫理坦、胡良剑、张振中