主讲人简介:肖冬梅,上海交通大学数学科学学院教授,常务副院长,国家杰出青年基金获得者,主要从事常微分方程和动力系统、生物数学的研究。
内容摘要:In this talk we first introduce the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in $\R_+^4$ are Hamiltonian systems. Then we discuss the integrability of these Hamiltonian systems in the Liouville sense and investigate the global dynamics of the completely integrable Lotka--Volterra Hamiltonian systems in $\R_+^4$. As an application of the invariant subsets of these systems, we obtain topological classifications of the $3$-submanifolds in $\R_+^4$ defined by the hypersurfaces $a x y + b z w+ c x^2 y + d x y^2 + e z^2 w + f z w^2=h$, where $a, b, c, d, e, f, w$ and $h$ are real constants.
讲座主持:寇春海
讲座语言:英语
视频: 摄影: 撰写:寇春海 信息员:唐晓亮 编辑:段然