主讲人简介:
李亚纯,上海交通大学数学科学学院教授,副院长,博士生导师。长期从事非线性偏微分方程的理论与应用研究,近年来在流体力学方程组的数学理论研究方面发表相关论文40余篇,并有多篇论文被收录在专著或系列丛书中,出版英文译著两本。先后主持了国家自然科学基金项目五项,上海市自然科学基金项目两项。入选上海市曙光人才计划、教育部新世纪优秀人才计划等项目,与同事合作获得上海市自然科学一等奖。
内容摘要:
We consider an initial-boundary value problem with mixed type boundary conditions for a class of degenerate parabolic-hyperbolic equations. Namely, we consider a Cartesian product domain and split its boundary into two parts. In one of them we impose a Dirichlet boundary condition; in the other, we impose a Neumanncondition. We apply a normal trace formula for $L^2$-divergence-measurefields to prove a new strong trace property in the part of the boundary where the Neumann condition is imposed. We establish existence and uniqueness of the entropy solution.
讲座主持:秦玉明教授
讲座语言:英语
视频: 摄影: 撰写:秦玉明 信息员:唐晓亮 编辑:吴彦