报告人简介:王玉兰,西华大学理学院教授,主要研究偏微分方程,已发表学术期刊论文23篇,被引用110余次。
内容摘要:In this talk we consider the initial-boundary value problem for a Keller-Segel-Navier-Stokes system in a bounded domain Ω ⊂ R ^N (N = 2,3) with smooth boundary. For the 2D case, we shall prove that any arbitrarily small algebraic saturation effect in the chemotactic sensitivity at large densities is sufficient to rule out any blow-up phenomenon. In the 3D case setting, we shall establish the existence of global weak solutions under some suitable saturation assumption of the sensitivity.
报告主持:陶有山 教授
报告语言:英语
视频: 摄影: 撰写:陶有山 信息员:唐晓亮 编辑:孙庆华