主讲人简介:
德国佛莱贝格科技大学(TU Bergakademie Freiberg, Germany),教授,博士生导师,主要研究偏微分方程解的适定性及应用分析。中德“偏微分方程分析及应用”国际合作项目德方重要成员,先后组织21个国际数学学术会议及分组会议,50余次受邀在国际数学学术会议上作学术报告,任若干个国际数学期刊的编委,在包括数学四大顶级期刊《Math. Anal.》在内的国际重要核心期刊上发表高水平论文100余篇,主持德国国家、州政府基金20余项,出版学术专著5部,培养了10余名优秀的博士生,在英国、德国、法国等的大学里任副教授、教授。
内容摘要:
n this lecture we consider the Cauchy problem for semilinear wave models with mass term and dissipation term having time-dependent coefficients. The nonlinearity on the right-hand side is supposed to be of power type. We are interested to describe the infuence of the interaction of these both coefficients and the regularity of the data on the critical exponent. In this way we find a scale of critical exponents. This scale coincides with the scale of critical exponents one has for the Cauchy problem to a related semilinear heat model. This hints to the optimality of the critical exponents.
主持人:秦玉明
视频: 摄影: 撰写:李学元 信息员:唐晓亮 编辑:朱一超