Martingale Solutions of Fractional Stochastic Equations Driven by Superlinear Noise

发布时间:2025-05-20发布部门:数学与统计学院

报告人简介:

王碧祥教授于兰州大学获理学学士、硕士与博士学位,现任美国新墨西哥理工大学数学系教授与博士生导师. 王碧祥教授主要从事确定与随机动力系统和非线性偏微分方程理论与应用等领域的研究,目前已发表SCI 论文150 篇,研究成果主要发表于Mathematische Annalen,Transactions of the American Mathematical Society,Journal of Functional Analysis,SIAM Journal on Applied Dynamical Systems,Proceedings of the American Mathematical Society,Journal of Differential Equations,Science China Mathematics,Stochastic Processes and their Applications,Nonlinearity等多个国际数学刊物上。研究成果已被国际同行引用6000余次.

报告摘要:

In this talk, we first prove the existence of martingale solutions of an abstract stochastic equation  with a monotone drift and a superlinear diffusion term. Both the nonlinear drift and diffusion terms are continuous but not necessarily locally Lipschitz continuous. We then apply the abstract result to establish the existence of martingale solutions of the fractional stochastic reaction-diffusion equation with a polynomial drift of any order driven by a superlinear noise. The pseudo-monotonicity techniques and the Skorokhod-Jakubowski representation theorem in a topological space are used to pass to the limit of a sequence of approximate solutions defined by the Galerkin method.



摄影:
编辑:朱一超
信息员:荣晔
撰写: